Applications of an Extended (G/G)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics
نویسندگان
چکیده
We construct the traveling wave solutions of the 1 1 -dimensional modified Benjamin-BonaMahony equation, the 2 1 -dimensional typical breaking soliton equation, the 1 1 -dimensional classical Boussinesq equations, and the 2 1 -dimensional Broer-Kaup-Kuperschmidt equations by using an extended G′/G -expansion method, where G satisfies the second-order linear ordinary differential equation. By using this method, new exact solutions involving parameters, expressed by three types of functions which are hyperbolic, trigonometric and rational function solutions, are obtained. When the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملA further improved ( G ′ G ) - expansion method and the extended tanh - method for finding exact solutions of nonlinear PDEs
In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in mathematical physics via the (1 + 1) dimensional modified Kawahara equation by using the following two methods: (i) A further improved ( ′ G )expansion method, where G = G(ξ) satisfies the auxiliary ordinary differential equation [G′(ξ)]2 = aG2(ξ) + bG4(ξ) + cG6(ξ), where ξ = x − V t while a, b, c and V...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کامل